中國激光 第15卷 第3期

NiCrSiB 合金的激光熔敷

杨洗陈 阎毓禾 汪行恺 顾洪武 (天津纺织工学院激光加工研究室) (天津市热喷涂技术中心)

提要:应用2kW—OO2激光器在A3钢板上进行NiOrSiB合金的熔敷处理,制取 了与超合金相当、具有耐高温、抗磨耐腐蚀的合金表面。在激光熔敷层中发现NiaSi 超点阵结构和长周期结构。

Laser cladding of NiCrSiB alloy

Yang Xichen, Yan Yuhe

(Laser Processing Laboratory, Tianjin College of Textile Technology, Tianjin)

Wang Xingkai, Gu Hongwu

(Tianjin Thermal Spraying Technology Centre, Tianjin)

Abstract: High power laser cladding of NiCrSiB alloy on A_3 steel plate was performed. Surface with excellent performances of high creep and oxidation resistance equivalent to nikel base superalloy K_6 has been obtained. The superlattice BNi₃Si and the long-period structure were first observed in NiCrSiB alloy laser cladding casings.

一、引言

激光熔敷是近年新兴的金属表面强化技 术,利用高功率激光的快速熔凝效应,可以在 低成本钢材上,根据熔敷材料、工艺的不同制 取不同性能的表面,成为提高金属表面抗磨 耐蚀耐高温性能的重要手段。用于激光熔敷 的材料主要有 Fo基、Ni 基及 Co 基三大系 列,在以前的工作中,我们系统地研究了 Fo 基^[13]、Co 基^[23]合金激光熔敷层的组织和性能。 Fo 基合金价格便宜来源广,抗磨 耐蚀性能 好;但它熔点高,流动性差,需要较高的激光 功率,耐热性、韧性不如 Ni、Co 基合金。Co 基合金虽然具有较佳的高温性能,但原料稀缺,造价昂贵,激光处理中烧蚀严重,一般很少采用。Ni基合金综合性能俱佳,我们开发了一种适于激光熔敷的 NiCrSiB 合金,本文系统地研究了其激光熔敷层的组织与性能。为便于比较,采用与文献[1]基本一致的测试方法。

二、熔敷材料的选择与工艺

适用于激光熔敷的材料应具有: 良好的 使用性能,耐磨损,耐腐蚀,耐高温,韧性好; 良好的工艺性能,对激光急冷急热有良好响

收稿日期:1986年10月4日。

(988: S1 (13):

应,裂纹敏感性小,熔融态下流动性好,与基体有良好的浸润性,冷凝后表面光洁度高,并 有自造渣防氧化作用;价格低廉易得。

常用的块状超合金(亦称高温合金)是以 Ni、Co或 Fe 形成的 γ 体为基, 具有良好的高 温性能。我们根据相图和有关资料,开发了 一种 NiCrSiB 合金, 其组分如下: 75.16 wt% Ni, 16 wt%Cr, 5 wt%Fe, 42 wt%Si, 3.8 wt% B, 0.84wt%C。Ni 呈面心立方结构, 是构成 γ基主要元素,无固态相变。Cr是固溶元 素,可与 Ni 无限固溶,产生晶格畸变,降低 层错能和原子扩散能力,构成稳定的γ-NiCr 固溶体,产生固溶强化作用。Cr 还是 表面稳定元素, 它的加入能提高基体抗高温 耐氧化耐腐蚀性能。加入一定量的 C. 可与 Or、Fe 元素生成硬质相碳化物。加入 B, 可 与Ni生成硬质相的硼化物,与碳化物一起产 生沉淀强化提高合金的耐磨性。 Si 与 Ni 能 生成具有超点阵结构的 Ni_sSi 相, 起弥散强 化作用, 而这种强化作用在常用的超合金中 是加入 Al Ti 生 成 超 点 阵 的 γ' —Ni₃(Al. Ti)来实现的。此外, Si B 可共同生成熔点 低、粘度小的熔渣,覆盖于熔敷层表面,防止 氧化,它们还能降低合金的熔点,降低所需激 光功率。在保证使用性能前提下,加入少量 的 Fe, 可降低合金的成本。

熔敷工艺:用火焰喷涂在 A₃钢板上均匀 预敷一层 NiOrSiB 合金涂层,我们实验取的 厚度有 0.3、0.4、0.5 mn 三种。使用 HL-2kWCO₂ 激光器进行熔敷处理,光束直径 3 mm,功率密度2.08×10³W/cm²,扫描速度 7.8 mm/s。多道扫描,每道搭接 0.5 mm。

三、激光熔敷层的显微结构

图 1 是其横断面的低倍组织,它由熔化 区、互溶区和基体三部份组成。图 2 是熔化 区高倍组织,呈现均匀细微的枝晶形貌,基体 是 γ-NiOr 固溶体,枝晶间均匀弥散分布着 碳化物、硼化物及共晶体。 图 3 是互溶区的 高倍组织,在激光快速熔凝过程中,微熔基体 呈 γ -Fo相,与熔敷层中 γ -NiOr固溶体互 溶,产生稀释效应,在界面上生成一条约 2 μ m 宽的白色固溶线,其上方生长着沿热流 方向的枝晶,稀释区宽度约 20 μ m,稀释效应 不如 FeOrSiB 合金显著。

图 4 是熔敷层横断面电子探针元素线扫 描分布,熔化区元素分布均匀,互溶区由于稀 释效应,Fe元素比熔化区增高,而Ni、Cr元 素浓度降低并向基体扩散。图 5 是 X 射线衍 射图谱,经鉴定分析,其主要相为: γ -NiCr固 溶体,具有超点阵结构的 γ' -Ni₃Si,碳化物 M₂₃(B, C)₆和M₇C₃(M=Cr, Fe)及硼化物 Ni₄B₃。测得本合金的 γ -NiCr固溶体晶格 常数比 γ -Ni略有增大($a_{\gamma-NiCr}=0.3540$ nm, $a_{\gamma-Ni}=0.3528$ nm),表明 Cr的固溶带来强 化作用。图 6 是碳化物M₂₃(B, C)₆在 γ -NiCr基体中一种分布形态的电镜照片。

图1 NiCrSiB 合金激光熔敷层的形貌(×150) 腐蚀条件: HNOs: HCI:甘油=1:3:5

图 2 NiCrSiB 合金激光熔敷层 的高倍金相照片(×1000) (腐蚀条件同图 1)

图 4 NiCrSiB 合金激光熔敷层中 Fe、Cr、 Ni 元素分布浓度的电子探针分析 加工参数: 激光功率 2000W; 速度 7.8 mm/s; 光束宽 3 mm

图 5 NiCrSiB 合金激光熔敷层的 X 射线 衍射图谱。CuK_a, γ: γ-NiCr; γ': Ni₃Si; K₂: M₇C₃; K₈: M₂₉(B, C)₆: B: Ni₄B₃

图 6 NiCrSiB 合金激光熔敷层中 M₂₃(B, C)₆ 胞状析出的透射电镜形貌(×40000)

值得提及的是,我们在本合金激光熔敷 层中,发现两种有重要科学研究价值的相: γ' -Ni₃Si 招点阵结构和待定的长周期结构。 图7是NiaSi在透射电镜下的形貌(a)及电 子衍射照片(b)。电子衍射谱的标定表明,该 区基体是 y-NiOr 固溶体,细小弥散的点状 析出物为 γ-NisSi。按照消光规律, 面心立 方结构的 γ-NiOr 固溶体衍射斑指数为全奇 全偶,出现指数奇偶混合的超结构斑点,表明 Ni₃Si 具有 Ou₃Au 型有序的 超结构。Ni₃Si 和基体晶格参数十分接近 (a_{Nist}=0.3520 nm, a_{7-NiCr}=0.3540 nm) 与基体保持共格关 系,相互取向一致: [123] NiaSi // [123] y-NiCr // 入射电子束, (111)_{NI-SI}//(111)_{7-NiCro}在高功 率激光作用下,高温中溶于基体过多的 Si 来 不及扩散而形成过饱和固溶体,近距离的浓 度起伏则形成γ-Ni_sSi相,在随后的冷却过 程中时效析出。由于冷却速率大,粒子更加 细小弥散,平均尺寸约15nm,间距约10nm, 均匀分布在γ基体上,其结构和形态很类似 于 Ni 基超合金中具有弥散强化作用的 γ'-Ni₃Al。Ni₃Si 性能稳定,构成本合金熔敷层 主要弥散强化相, 有利于提高合金的高温蠕 变和持久性能。

此外在透射电镜中,还发现γ-NiCr基体上有层状衬度的析出物[图 8(a)],其电子 衍射图案呈层状排列的串点[图 8(b)],反映 激光熔敷层中存在某种长周期结构,其物相、

(a) (×60000) (b) [123]γ/[123]γ/| 人射路子束
图 7 γ-NiCr 固溶体中弥散析出的γ'-Ni₃Si
粒子的透射电镜形貌(a)及其电子衍射图案(b)

 (a) (×50000)
(b)
图 8 NiCrSiB 激光熔敷层中 γ-固溶体中 层状析出的长周期结构 (a) 及其电子衍射(b)
结构、生成规律及强化机制尚待进一步研究。

四、激光熔敷层的性能

采用与文献[1]相同的方法,分别测试了 NiCrSiB 合金激光熔敷层的硬度、磨粒磨损 及声发射曲线,得出了 FeCrSiB 合金基本一 致的规律。熔区硬度均匀,平均 Hv=862, 比 FeCrSiB 硬度(Hv1200)低一些。激光处 理使 Ni 基合金磨损性能提高 4~5倍,但与 Fe 基激光层比较,磨损失重约为后者的 1.5 倍,反映 Ni 基硬化效果不如 Fe 基,但韧性 高于 Fe 基。从表 1示出的声发射脆性测试 数据中看得更为明显。激光处理后,Ni 基塑 性指标($\Delta l_{AB}, \sigma_k, A_k$)有近十倍提高,是 Fe 基

表1 声发射测试结果

试 样	PAE (kg)	(mm)	P _E (kg)	Δl_E (mm)	P _b . (kg)	∆l _F (mm)	σ_K (kg/ mm ²)	$\begin{array}{c} A_{\mathcal{K}} \\ (\mathrm{kg} \\ \cdot \mathrm{mm} / \\ \mathrm{mm}^2) \end{array}$
NiCrSil 激光熔亮	450	0.46	530	0.55	600	1.15	40.1	1.29
NiCrSiI 火焰喷荡	50	0.04	345	0.46	320	0.92	4.6	0.02
FeOrSiE 激光熔剪	320	0.37	525	0.56	625	1.16	28.5	0.74

熔敷层的 $1 \sim 2$ 倍;其强度指标 (P_E, P_F) 可与 Fe 基相当。

图 9 是 NiCrSiB 合金激光熔敷试样 850°C 加载 90 MPa 的蠕变曲线,并同时给出 K6 合金的曲线,后者是常用制作涡轮叶片的 高温合金,可以看到本试样蠕变性能已接近 于 K6 合金。激光熔敷处理改善了塑性;特 别是 Ni₈Si 相热性能十分稳定,直到其熔点 1150°C也不分解。这些作用对提高材料高温 蠕变性能都是有利的。

评价材料高温性能的另一个指标是高温 抗氧化性。采用等温氧化方法,试样尺寸1× 25×30mm。先将试样表面磨光到 ▽7,后丙 酮脱脂。精密天平称重,放于坩埚内,在马弗 炉 850℃空气气氛下氧化。测量不同氧化时 间内试样的增重,绘于图 10。它近 们 服从 Δw=K₉√t关系, Δw 是单位面积的增重, t是加热时间, K₉是等温氧化速度。表明该 试样表面氧化膜随时间增加而增厚过程不断 变慢,由于膜的保护作用使金属表面氧化受 阻,激光熔敷处理的抗氧化作用很强,已接近 于 K6 合金。

图11 是 NiOrSiB 合金的阳极极化曲线。 激光熔敷处理前后曲线有三点显著不同:激 光处理试样点蚀电位正移 670 mv,稳定纯化 区拓宽 300 mV,维纯电流下降 320 μA/cm²。 γ'-Ni₃Si 相的大量析出是电化学性能提高的 主要原因。本合金含 Cr 量显著低于 FeOrSiB 合金^{CL},其全面电化学性能略逊于后者。

连续调谐的 16 µm 仲氢 Raman 激光器

中国科学院电子学研究所与大连化学物理研究 所联合研制的连续调谐 16 µm 仲氢 Baman 激光器 已获得激光输出,单脉冲输出能量 51 mJ。与美国、 日本、联邦德国等国不同,采用了连续调谐的多个大 气压 CO₂ 激光振荡-放大系统直接泵浦方案。

多个大气压 CO₂ 激光器直接泵 浦的 Raman 激 光器具有连续调谐和高量子转换效率的优点。电子 学研究所于 1978 年首次采用多个大气压 CO₂ 激光 器泵浦 NH₃ 气体获得了 12.8 μm 附近连续 调谐的 Raman 激光⁽¹⁾。在仲氢情况下,由于泵浦阈值高达 30 MW, 需要。高功率 CO₂ 激光振荡放大系统泵浦 进一步的实验是研究 16 μm 激光器的调谐特性并可 望将输出能量提高至数百 mJ。

参考文献

万重怡 et al. 应用激光, 1981; 1(2):4
(中国科学院电子学研究所 万重怡 刘世明
中国科学院大连化学物理研究所 周大正 李新华
1987年11月22日收稿)

. 178 .